Early Data-Taking with

ATLAS

Stephanie Majewski
(on behalf of the ATLAS Collaboration).

BROOKHAVEN NATIONAL LABORATORY

LHC@BNL, 8 Feb 2010

- Introduction
- Trigger Commissioning
- Muon Spectrometer Performance
- Inner Detector Performance
- Performance of the Electromagnetic and Hadronic Calorimeters
- Summary and Outlook

Detector Hardware Status

Subdetectors operational 98-100% of the time

Subdetector	# Channels	Operational Fraction
Pixel detector*	80 M	97.9%
SCT Silicon strip detector*	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.2%
LAr EM Calorimeter	170 k	98.8%
LAr Hadronic Endcap Calorimeter	5600	99.9%
LAr Forward Calorimeter	3500	100%
Tile Calorimeter	9800	99.2%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Trigger	370 k	98.5%
TGC Endcap Muon Trigger*	320 k	99.4%
Level 1 Calo Trigger	7160	99.8%

*detector not fully on or at reduced voltage when no stable beam

First Collisions at $\sqrt{s} = 900$ GeV

- ► First collision observed at 14:22, 23 November 2009
- ATLAS recorded ~200 collision candidate events

Jet Event at √s = 2.36 TeV

Minimum Bias Trigger Scintillator (MBTS), 2.09 < |**η**| < 3.84

mounted on the LAr endcap cryostat

Trigger Commissioning

Early Data, Low-Luminosity

Trigger Commissioning

- MBTS main Level 1 trigger for collisions in December run
- Other L1 triggers active (256 incl. calo, muon)
- Online beamspot monitoring

- Total # Collision Candidates: 917k (~20µb⁻¹)
- $\sigma_{Lumi} < 30\%$
- Total during Stable Beams: 538k (~12µb⁻¹)
- Total at $\sqrt{s} = 2.36$ TeV: **34k**
- Data-Taking Efficiency: ~90%

Distributed Computing

Distributed Computing

- 200 Tb of data recorded
- Prompt reconstruction at CERN Tier0
- Data available at Tier2s for analysis within 8 hours

Muon Spectrometer

Muon chambers plus toroid magnets

toroid magnets off

Muons in Collision Events

distribution peaked at large η

(consistent with minimum bias p-p collisions)

expected width ~200 mm

(consistent with multiple scattering of ~3 GeV muons)

Combined Cosmics Data

2008 2009

+93M events in Summer 2009

Large cosmic muon sample used to begin to commission subdetectors

Muon Performance

many studies already done using cosmic muons

Muon Performance

many studies already done using cosmic muons

alignment between muon spectrometer and inner detector

muon energy lost in the calorimeters

Inner Detector

in a 2T solenoid field

Performance with 900 GeV Collisions

dE/dx in the Pixel Detector

Semiconductor Tracker Hit Efficiency

High-threshold hits in the Transition Radiation Tracker

Alignment

Preliminary alignment was performed with cosmic muons, confirmed with collision events

Excellent agreement w/ MC

Secondary Vertices

Resolutions limited by multiple scattering

Y→e⁺e⁻ Conversions

40% probability at $\eta = 0$

Y→e⁺e⁻ Conversions

 $p_{T}(e^{-}) = 0.79 \text{ GeV}$ 1.75 GeV

Conversion point 1st SCT layer

Conversions map the material in front of the calorimeters

Calorimeters

Electromagnetic and Hadronic

Cell Energy Distributions

$\pi^0 \rightarrow \gamma \gamma$

2 γ candidates w/ $E_T(\gamma) > 300$ MeV; $E_T(\gamma, \gamma) > 900$ MeV

- shower shapes compatible with photons
- no corrections for upstream material
- data/MCnormalized to same area

Electron Identification

- expected background: 70% hadrons, 30% from conversions
- sliding window EM cluster
 (E_T > 2.5 GeV)
- loosely matched to a reconstructed track (p_T > 0.5 GeV)
- 783 electron
 candidates; 364
 fulfill loose shower
 shape criteria

Calorimeter Clusters

3-D topological clusters are formed with a $4/2/0\sigma$ noise suppression algorithm

starting point for jet reconstruction

energy can be computed at EM scale or can apply refined calibration

Jet Performance

Anti-k_T algorithm with d = 0.4; constituents are 3-D topological clusters

EM Scale; no calibrations applied

Missing Transverse Energy

randomly triggered events

EM Scale; no calibrations applied measured over full calorimeter coverage $(2\pi \text{ in } \varphi, |\eta| < 5, \sim 200 \text{k cells})$

resolution

Summary and Outlook

- 2009 brought the first LHC collision data
- ATLAS was ready and successfully recorded ~20µb⁻¹
- The first indications are that the detector is performing well... years of detailed simulations, test-beam activities and cosmics commissioning are paying off
- The collaboration looks eagerly toward more data <u>very</u> soon! at high energy and high luminosity

Summary and Outlook

- 2010/2011 Run Plan is to collect 1 fb⁻¹ at 3.5 TeV x 3.5 TeV
- Possibilities with a 1 fb⁻¹ dataset at $\sqrt{s} = 7$ TeV:
 - \sim 250k Z → e e, \sim 6k top → ℓ + jets
 - extend the discovery reach for W', Z'
 - (some) Higgs sensitivity (2 experiments combined)

The excitement is coming again soon, to a control room near you!

Additional Slides

Chamonix 2009

Chamonix 2009

Calibration Samples

Chamonix 2009

